Score-P Cheat Sheet
General Workflow Loop

e Preparation: instrument target application and set up measurement environment
e Measurement: run application with measurement infrastructure enabled

e Analysis: analyse generated performance data

e Examination: find possible cause of performance anomalies in the code

e Optimization: apply optimizations to eliminate bottleneck

o Repeat: apply analysis workflow loop until acceptable performance achieved

Performance Analysis Procedure
e Create a profile with full instrumentation
e Compare runtime to uninstrumented run to determine overhead
o (Incrementally) create filter file using hints from the scorep-score tool
e Create an optimized profile with filter applied
e Investigate profile with CUBE

e For in-depth analysis, generate a trace with filter applied and examine it using
Scalasca and than Vampir

Application Instrumentation
e Prefix all compile/link commands with scorep

e Compile as usual

e Advanced instrumentation options available to further adjust the measurement configuration

Application Measurement
Set Score-P environment variables

SCOREP_EXPERIMENT_DIRECTORY Name of the experiment directory
SCOREP_ENABLE_PROFILING Enable generation of profiles (default=true)
SCOREP_ENABLE_TRACING Enable the generation of traces (default=false)
SCOREP_TOTAL_MEMORY

SCOREP_FILTERING_FILE Name of file containing filter rules

... and many more (see manual or run scorep-info config-vars --full)
Run application as usual:

export SCOREP_ENABLE_TRACING=false

export SCOREP_ENABLE_PROFILING=true

export SCOREP_EXPERIMENT_DIRECTORY=scorep_run

export OMP_NUM_THREADS=4

mpirun -np 4 ./binary_scorep

o0 o° oo o° o

L]

Preparation |

|

Measurement |

l

Analysis |

l

Examination |

|

Optimization |

| N

Total memory in bytes used for Score-P per process (default=16M)

Profile Examination with CUBE and Filter File Creation

Analyze profile with CUBE

% cube scorep_run/profile.cubex
Create filter file with hints from scorep-score

% scorep-score —r scorep_run/profile.cubex

% scorep-score -r -f ./scorep.filt scorep_run/profile.cubex
Create profile with filter applied
export SCOREP_EXPERIMENT_DIRECTORY=scorep_run_filter
export SCOREP_FILTERING_FILE=scorep.filt
mpirun -np 4 ./binary_scorep

o

o o

Automatic Trace Analysis with Scalasca

Run the application using Scalasca with trace collection and analysis

export SCOREP_EXPERIMENT_DIRECTORY=scorep_run_trace
export OMP_NUM_THREADS=4

export SCOREP_TOTAL_MEMORY=25M

scan -f ./scorep.filt -t mpirun -np 4 ./binary_scorep
Produces and examine trace analysis report

o

% square scorep_run_trace

o o° o oP

Interactive Performance Analysis with Vampir

Open small traces direclty in Vampir
% vampir scorep_run_trace/traces.otf2

Open large traces using VampirServer

1. Launch analysis server on remote machine
ssh remote-machine
vampirserver start -n 4
Running 4 analysis processes...
VampirServer <17950> listens on:

o o

nodel23:30085

2. Open SSH tunnel to connect remote VampirServer with GUI on your local machine
% ssh -L30000:n0del23:30085 mymachine

3. Open Vampir and connect to VampirServer (listening on localhost:30000 via SSH tunnel)
% vampir localhost:30000:scorep_run_trace/traces.otf2

4. Shutdown VampirServer on remote machine when finished
ssh remote-machine
vampirserver stop

o
S
o
S

(abort with vampirserver stop 17950)

PAPI Hardware Performance Counters

% export SCOREP_METRIC_PAPI=PAPI_L2_DCM:!CPU_TEMP1

CPU_TEMP1 is provided by the Im-sensors component.
See papi_avail and papi_native_avail for available counter.

PAPI_L[1[2|3]_[DIIITIC[MIHIA|IR|W]

Level 1/2/3 data/instruction/total cache
misses/hits/accesses/reads/writes

PAPI_L[1]2]3]_[LD|STIM

PAPI_CA_SNP
PAPI_CA_SHR
PAPI_CA_CLN
PAPI_CA_INV
PAPI_CA_ITV
PAPT_BRU_IDL
PAPI_FXU_IDL
PAPI_FPU_IDL
PAPI_LSU_IDL
PAPI_TLB_DM
PAPI_TLB_IM
PAPI_TLB_TL
PAPI_BTAC_M
PAPI_PRF_DM
PAPI_TLB_SD
PAPI_CSR_FAL
PAPTI_CSR_SUC
PAPI_CSR_TOT
PAPI_MEM_SCY
PAPI_MEM_RCY
PAPI_MEM_WCY
PAPI_STL_ICY
PAPI_FUL_ICY
PAPI_STIL_CCY
PAPI_FUL_CCY
PAPI_BR_UCN
PAPI_BR_CN
PAPI_BR_TKN
PAPI_BR_NTK
PAPT_BR_MSP
PAPI_BR_PRC
PAPI_FMA_INS
PAPI_TOT_IIS
PAPI_TOT_INS
PAPI_INT_INS
PAPI_FP_INS
PAPI_LD_INS
PAPI_SR_INS
PAPI_BR_INS
PAPI_VEC_INS
PAPI_LST_INS
PAPI_SYC_INS
PAPI_FMIL_INS
PAPI_FAD_INS
PAPI_FDV_INS
PAPI_FSQ_INS
PAPI_FNV_INS
PAPI_RES_STL
PAPI_FP_STAL
PAPI_FP_OPS
PAPI_TOT_CYC
PAPI_HW_INT

Level 1/2/3 load/store misses

Requests for a snoop

Reg. for excl. access to shared cache line
Reqg. for excl. access to clean cache line
Requests for cache line invalidation
Requests for cache line intervention
Cycles branch units are idle

Cycles integer units are idle

Cycles floating point units are idle
Cycles load/store units are idle

Data translation lookaside buffer misses
Instruction transl. lookaside buffer misses
Total translation lookaside buffer misses
Branch target address cache misses

Data prefetch cache misses

Translation lookaside buffer shootdowns
Failed store conditional instructions
Successful store conditional instructions
Total store conditional instructions
Cycles Stalled Waiting for memory accesses
Cycles Stalled Waiting for memory Reads
Cycles Stalled Waiting for memory writes
Cycles with no instruction issue

Cycles with maximum instruction issue
Cycles with no instructions completed
Cycles with maximum instructions completed
Unconditional branch instructions
Conditional branch instructions
Conditional branch instructions taken
Conditional branch instructions not taken
Conditional branch inst. mispredicted
Cond. branch inst. correctly predicted
FMA instructions completed

Instructions issued

Instructions completed

Integer instructions

Floating point instructions

Load instructions

Store instructions

Branch instructions

Vector/SIMD instructions

Load/store instructions completed
Synchronization instructions completed
Floating point multiply instructions
Floating point add instructions

Floating point divide instructions
Floating point square root instructions
Floating point inverse instructions
Cycles stalled on any resource

Cycles the FP unit(s) are stalled
Floating point operations

Total cycles

Hardware interrupts

Resource Usage Counters

The Unix system call get rusage provides information about consumed resources and operating system events.

% export SCOREP_METRIC_RUSAGE=ru_stime:ru_majflt
Unit Linux Description

Name
ru_utime
ru_stime
ru_maxrss
ru_ixrss
ru_idrss
ru_isrss
ru_minflt
ru_majflt
ru_nswap
ru_inblock
ru_oublock
ru_msgsnd
ru_msgrcv

ms
ms
kB
kB/s
kB/s
kB/s

H o H H HF

ru_nsignals#

ru_nvcsw
ru_nivcsw

#
#

X
X

X
X

Total amount of user time used.

Total amount of system time used.

Maximum resident set size.

Integral shared memory size (text segment).
Integral data segment memory used over runtime.
Integral stack memory used over the runtime.
Number of soft page faults.

Number of hard page faults.

times process was swapped out of phys. mem.
Number of input operations via the file system.
Number of output operations via the file system.
Number of IPC messages sent.

Number of IPC messages received.

Number of signals delivered.

Number of voluntary context switches.

Number of involuntary context switches.

